
Borwein integral(s)

In 2001 Borwein & Borwein noted that the pattern
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These results can be understood using Fourier transforms and convolution.

Fourier transforms between f (t) and F(ω) are

f (t)=
1

2π
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F(ω)eiωt dω, and F(ω)=
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f (t)e−iωt dt. B.6

The Fourier transform of the product of two functions f (t)g(t) is

H(ω)=
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f (t)g(t)e−iωt dt, B.7

and it can be shown that

H(ω)=
1
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F(ω)∗G(ω), B.8

i.e. 1/2π times the convolution of F(ω) and G(ω).

Define the rect(t) function – a ‘top-hat’ function, which has unit area – as

rect(t)=
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0 if |t|> 1/2;
1/2 if |t|= 1/2;
1 if |t|< 1/2.
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which is 2π times a top-hat function of height n/2 and width 2/n, i.e. an area of unity. Then
its Fourier transform is
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Now consider
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which is the FT of sinc(t)× sinc(t/3). Then the LHS of B.2 above is
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From B.7 , put f (t)= sinc(t)= f1(t) and g(t)= sinc(t/3)= f3(t), so using B.11 , then B.8 gives

H(0)=
1

2π
F1(ω)∗F3(ω)
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The ‘[. . . ]’, is the convolution of a wide top-hat with a narrow top-hat. Note the height of the
wide top-hat is ½, and each top-hat has unit area.
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At ω= 0 this convolution is ½ (because the width of the narrow top-hat is less than the width
of the wide top-hat), so H(0)=π. Thus B.2 is
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Note that the flat region of this convolution, of height ½, is now shorter that the width of the
wide top-hat (by the width of the narrow top-hat).

For the next step, B.3 , multiplying with sinc(t/5) means another convolution with an even
narrower top-hat function. At ω= 0 this still has a value of ½, because 1

3 +
1
5 < 1, as the result

from all the convolutions is still flat near ω= 0.

This continues up to B.4 , including the sinc(t/13) term, as 1
3 +

1
5 . . . 1

13 < 1. However, for B.5 ,
including up to the sinc(t/15) term, the value of all the convolutions at ω= 0 is a bit less than
½, because 1

3 +
1
5 . . . 1

15 > 1, so the result from all the convolutions is no longer flat at ω= 0.
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